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I present a construction of Markov partitions related to a statistical description 
of a class of hyperbolic dynamical systems of N2 with singularities, through a 
general algorithm. This construction, correct, in contrast to previous attempts, 
applies in particular to billiards problems, yielding an easy-to-handle Markov 
partition; as an application, the incorrectness of a lemma of Bunimovich and 
Sinai (which was known to need improvement) is made clear. 
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Many physical systems can be modeled by discrete-time dynamical systems. 
In particular, the physicist is interested in the properties of some nice 
invariant measure/~, the Bowen Ruelle measure, which is, in ergodic cases, 
the unique distribution asymptotically reached by the set of the iterates of 
an arbitrary initial condition--except maybe for a set of initial conditions 
of zero probability. The Bowen-Ruelle measure can also be thought of as 
the probability measure reached as the limit of the evolution of any initially 
smooth density. 

Little can be said in general about dynamical systems. Among them, 
one: class can and has been described in an extensive way, the class of 
smooth (C 2) hyperbolic systems; this paper is a contribution to the 
understanding of hyperbolic systems with singularities, a larger class. Note 
that I restrict consideration in this paper to mappings of N2. I recall that 
hyp,erbolicity is the existence of a constant 2 > 1 and, for almost every 
point x of the phase space, of two directions e,(x) and es(x ) (unstable and 
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stable) along which the tangent mappings DT ~ are expanding (resp. con- 
tracting) by a factor at least 2 n, for any n e N. When this makes sense, the 
two manifolds tangent, respectively, to these two vector fields are called 
unstable and stable manifolds. 

The methods of symbolic dynamics have been shown to be a natural 
tool of great efficiency in the study of dynamical systems. In particular, 
they allow one to give a statistical description of some hyperbolic 
dynamical systems; it is this statistical description, which allows the use of 
the thermodynamic formalism, on which I focus here. 

Symbolic dynamics makes use of a (finite or countable) partition of 
the phase space to code any point into an infinite chain of symbols, namely 
the sequence of the elements of the partition to which the successive (future 
and past) iterates of the point belong; the original mapping maps into the 
shift on these sequences. Various properties of dynamical systems can be 
studied via the analogous properties of the associated symbolic systems. (3) 
Among the possible partitions yielding such a correspondence, one class is 
of special interest for hyperbolic systems: the Markov partitions, which 
lead as a process on the infinite sequences of symbols to a special class 
known as topological Markov chains. These processes are defined by a 
transition matrix, the elements of which are O's and l's, forbidding or 
allowing the corresponding transition. As a property of partitions, the 
Markov property reads as some fitting condition to the foliation induced 
by the hyperbolicity, which is given explicitly below. The objects and con- 
cepts related to hyperbolicity take a very simple form in terms of these 
topological Markov chains. 

The results which may be derived via the symbolic formalism are of 
two types: topological results (topological transitivity and mixing, 
topological entropy), and metric ones. Symbolic coding by Markov par- 
titions has been used to construct and investigate the properties of an 
invariant measure via its conditional probabilities along the unstable and 
stable manifolds. (4'5) It also allows (6) the description of the Bowen-Ruelle 
measure as an equilibrium state for some potential related to the Jacobian 
of the map. 

The billiards on ~2 with a periodic configuration of scatterers (known 
as Sinai billiards) lead to an interesting example of hyperbolic systems with 
singularities, where the singularity set corresponds to the trajectories 
tangent to some scatterer. For this system, an invariant measure, absolutely 
continuous with respect to the Lebesgue measure, is explicitly known. 
Bunimovich and Sina'i (1'2) use the statistical description of this measure to 
derive the ergodic and mixing properties of the system from the 
probabilistic properties of the finite Markov chains. 

The present paper intends to clarify one question raised by the proofs 
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in Ref. 1. 2 The point is that the partition the authors construct there does 
not have the Markov property, which is necessary to their description; I 
present here, in a slightly more pedagogical way, a correct construction 
which seems to be what the authors actually had in mind. My construction 
goes through a general algorithm, which does not apply only to billiards, 
and which makes the Markov partition an easy to use tool, with easy to 
check properties. Applied to Sinai and Bunimovich's billiard problem, it 
allows one to make clear that a lemma in Ref. 1 is incorrect; the lemma 
relites on the finiteness of some class of elements of the Markov partition 
used in the canonical isomorphism, and we will see that there is no reason 
to assume this finiteness. This lemma provides some bound of the 
correlation from the past of the conditional transition probabilities; this 
estimate (Ref. l, Lemma 6.6) is a key point necessary to derive the ergodic 
and mixing properties of the Bowen-Ruelle measure; the authors, aware of 
the problem raised by the proof of the lemma, have now made an (as yet 
unpublished) improvement of the proof. 

In this paper, I deal with some mapping T of some invariant set 
Xcz ~2 such that p (X)=  1, where # is an invariant measure for T. The 
mapping T is hyperbolic and twice continuously differentiable except on a 
one-dimensional regular singularity curve S. Note that, in the case of a 
mapping with singularity, the stable and unstable manifolds present 
singularities as they cross S, or (some of) the images of S by the mapping. 
The mapping studied in Refs. 1 and 2 (which is such a T) is the Poincar6 
map of the periodic billiard dynamics associated with the successive reflec- 
tions on scatterers; the two variables are the speed angle and an abscissa 
along the scatterer. Another example can be found in Ref. 7, where the 
authors study some particular hyperbolic piecewise linear (thus, singular) 
mappings which exhibit a strange attractor. 

Before giving the construction of the Markov partition in our case, I 
recall the definition of Markov partitions. I call an unstable (stable) fiber 
any measurable subset of finite length of some regular component of the 
unstable (stable) manifold of some point. A subset C of X will be called a 
parallelogram if for any x e C there are unique unstable and stable fibers 
c,Xx), cs(x) ~ C that allow us to describe the parallelogram in the following 
s e n s e :  

y ~ c u ( x )  z e Cs(X)  

and such that, for y, z ~ C, Cs(y) n c,~(z) is a unique point. 

2Note that throughout the present paper I have taken for simplicity m =  1 and set 
S = S  i L J S  1 . 
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Note that, given a partition into parallelograms C, the corresponding 
decompositions of the space into unstable (resp. stable) fibers c,(x) [c,(x)] 
are unique. We can now state the Markov property: A partition t/ is 
Markovian when its elements are parallelograms and, moreover, 

c , (Tx)cTcu(x  ) and Tc,(x)cc , (Tx)  fo rany  x e X  

where c, (cs) is the partition into unstable (stable) fibers induced by t/. 
In the regular case, the induced fibers c,(x) [c~(x)] are connected 

components of unstable (stable) manifolds; the elements of the partition 
are interiors of plain parallelograms, they are connected and finite in num- 
ber. The existence of a singularity curve S makes the partition more 
intricate. Note in particular that a regular component of an unstable 
(stable) fiber cannot cross any T~S, n > 0  (n<0) .  An element of the 
Markov partition must be a parallelogram; since the singularity curve S 
can neither cross the borders of a piece not be itself a border (since S is 
part neither of an unstable nor of a stable manifold), the elements of the 
partition have to be infinite in number; each element is disconnected and 
displays a Cantor-like structure in the two directions, in order to avoid S 
and all its images by the map. 

I give now the construction of a Markov partition t / for  some hyper- 
bolic systems in ~2 with singularity, tt will be a partition of X (e.g., the unit 
square in Ref. 1 or the strange attractor in Ref. 7). Let us suppose a finite 
pre-Markov partition q0 has been constructed, which fulfills the hypotheses 
Ref. 1, Theorem 5. ~/0 is a finite partition, whose elements are 
parallelograms with pieces of stable and unstable manifolds as borders 
except for a set of elements whose union covers a neighborhood Do of S 
and which are triangles, parallelograms, or pentagons and may admit S as 
a border. Moreover, except for this set of elements, r/o has the Markov 
property. 

In Do, the refinement of ~/o by its images T-+lq0 produces some 
parallelograms, and leaves a smaller neighborhood D1 of S of "bad 
elements." The iteration of this process yields a covering of the 
neighborhood of S by an infinite sequence of parallelograms, the nearer the 
smaller. The same construction must be performed around each image T"S 
for n integer, and in a coherent way in order to get the Markov property; 
the neighborhoods of the T~S in which the same hierarchical procedure is 
applied must be thought of as thin stripes approximately oriented in the 
unstable (stable) direction for n > 0(n < 0), which are cut out of previously 
connected parallelograms. 

Here ! introduce some convenient conventions. Let (q, p), for p and q 
in N, be the partition T q~]o V T-q+l/~0 v " ' "  V Tp-lrlo V TPrlo : note that 
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(p, q) is a refinement of I/o. Let T+nA, for any set A, denote the union 
T~A u T-nA. For any partition ~, let cr denote the mapping that associates 
to x the element ~(x) of ~ containing x (when this makes sense). 

Let Dn be the union of the elements of (n, n) that are adjacent to S. I 
will assume that, as in Refs. 1 and 7, an exponentially decaying bound on 
/~(.Dn) has been obtained. Let En=Dn\D~,+I: E~ is the union of the 
parallelograms drawn by (n + 1, n + 1 ) in D,.  Let Ap ~- U 0 ~ k <~ p + 1 T +kop ; 
since #(lira suppAp)=O, we can, by the Borel-Cantelli lemma, index 
almost every point with the function P(x )=Max{p[xeAp} .  Note 
that P ( x ) = p  implies not only xeU0.<k_<p+~ T+I~Dp, but also 
x e 0o_<~.<p+l T+kEp. Then, suppose that some x, with P(x)= p, belongs 
to Dp. It is natural to define ~ l ( x ) = ( p + l , p + l ) ( x ) ;  thus, if x with 
P ( x ) = p  belongs to TnDp, In[ < p +  1, it is natural to define 
q(x) = (p + 1 - n, p + 1 + n)(x), which, I recall, is the image by T" of some 
element of (p + l, p + 1 ). 

I come now to the definition of r/. Let N(x)= Min{n ~< 0[x e T+-nDp}; 
for some x eX,  let P ( x ) = p  and N(x )=n  (p, thus n, is #-almost-surely 
finite); then I define q by setting 

x e  T~Ep\T-nEp ~t l (X)= (p+ 1 - n ,  p+ I +n)(x) 

XE TnEp("~ T nEp:::::>tl(x)= ( p §  1 +n, p,k, 1 § 

x e  T-nEp\T~Ep ~ q ( x ) =  ( p §  1 § p +  1 -n ) ( x )  

The rephrasing of this definition in term of domains of equality of ~/ 
with the (q, p)'s that follows is a useful tool; in particular, it allows a 
tedious but automatic check of the Markov property. 

Let An,p-=--(UO<<k<~n 1 T+-I~Dp)k3(Un<~k<~p+l T+-ICDp+l)U(Uk>p+l 
T+-:kDk- 1). We have 

t l = ( p §  l - - n , p §  l +n) on (T'Ep\T-nEp)\An,p 

t l - - ( p § 2 4 7 2 4 7  on(T~EpC~T-nEp)\An,p 

q - - ( p +  l - n , p +  l +n) on (T-~Ep\T~Ep)\An,p 

Note that a piece of the partition is a Cantor set, obtained as the com- 
plement of an infinite set of (unstable and stable) strips--that is, An,p--Cut 
out of a regular, connected parallelogram--that is, the element of 
( p +  1 i n ,  p +  1 i n ) .  

The authors of Ref. 1, in short, construct independently two partitions 
r/+ and t/_, which are adapted to the covering of the neighborhoods of, 
respectively, the T~S and the T - " S  (ne ~); r/ is then defined by 
t/=:t/+ v r/ . They define, more or less explicitly, indices P+(x),  N+(x) 
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allowing them to describe t/+, and similarly for r / ,  The absence of the 
Markovian property comes, in this description, from the jumps experien- 
ced, along a trajectory, by P+ and P when N+ or N_  becomes zero. 

I come now to the statement about  the partition on which Ref. 1, 
Lemma 6.6 relies fundamentally. In the proof of this lemma it is assumed 
that the image by T of any element of t/ is exactly an element of t/, except 
for a finite set of elements. Obviously, this exceptional set should contain 
all the elements of t/ obtained from parallelograms of (q, p) with q = 0 or 
p = 0, since r/is a refinement of t/o; but the known properties of folding and 
expansion of the images of S prove that these elements are infinite in num- 
ber. 

Although the partition I construct does not allow one to get the 
desired results of Ref. 2, it is an efficient tool for the study of this type of 
dynamical system. This Markov partition is the generalization of the finite 
partitions used by Anosov to deal with C 2 hyperbolic mappings; in par- 
ticular, an analogous partition was used in Ref. 7 to deal with the Lozi 
map, and to extend general results on entropy, Lyapunov exponents, and 
Hausdorff  dimension of attractors to that mapping. 
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